Math, asked by stunningsanju1, 1 year ago

If y= (√x)^ √ x^ √x^ √x find its derivative.

Answers

Answered by Anonymous
14

Answer :

 \boxed{\sf \frac{dy}{dx}  = ( { \sqrt{x}) }^{(x \sqrt{x} )} ( \frac{ \sqrt{x} }{2}  + log \sqrt{x}( \frac{3}{2}  \sqrt{x} )) }

Step-by-step explanation:

let the function is,

\sf y = ( { \sqrt{x} })^{( { \sqrt{x}) }^{ ({ \sqrt{x}) }^{ (\sqrt{x} )} } }

\sf y =  {( \sqrt{x}) }^{( { \sqrt{x} )}^{( \sqrt{x} \times  \sqrt{x}  )} }

\sf y =  {( \sqrt{x}) }^{(x \sqrt{x} )}

taking log on both the sides

\sf log(y)  =  log ({ \sqrt{x} }^{(x \sqrt{x}) }  )

we know, log rule,

\sf log m ^n = n log m

therefore,

\sf log(y) = (x \sqrt{x}) log ({ \sqrt{x} })

Differentiation wrt x

\sf  \frac{1}{y} \frac{dy}{dx}  =  \frac{d}{dx} ( (x \sqrt{x}) log ({ \sqrt{x} }))

we know, product rule for differentiation

[if y = u. v, then dy /dx = u.(dv/dx)+v. (du/dx)]

therefore,

\sf  \frac{1}{y}    \times \frac{dy}{dx}  = x \sqrt{x} \times  \frac{1}{ \sqrt{x} }  \times  \frac{1}{2 \sqrt{x} }  + log \sqrt{x} (x  \times \frac{1}{2 \sqrt{x} }  +  \sqrt{x} )

\sf =  \frac{x}{2 \sqrt{x} }  + log \sqrt{x} ( \frac{x + 2x}{2 \sqrt{x} } )

 \sf =  \frac{x}{2 \sqrt{x} }  + log \sqrt{x} ( \frac{3x}{2 \sqrt{x} })

\sf =   \frac{ \sqrt{x}  \times  \sqrt{x} }{2 \sqrt{x} }   + log \sqrt{x} ( \frac{3 \sqrt{x}  \times  \sqrt{x} }{2 \sqrt{x} } )

\sf =  \frac{ \sqrt{x} }{2}  + log \sqrt{x}  (\frac{3}{2}  \sqrt{x} )

 \sf \frac{dy}{dx}  = y( \frac{ \sqrt{x} }{2}  + log \sqrt{x} ( \frac{3}{2}  \sqrt{x} ))

Now, put the value of y

\boxed{ \sf \frac{dy}{dx}  = ( { \sqrt{x}) }^{(x \sqrt{x} )} ( \frac{ \sqrt{x} }{2}  + log \sqrt{x}( \frac{3}{2}  \sqrt{x} )) }

Similar questions