Math, asked by ratanrigel2303, 3 months ago

If y ^ x = xfind * (dy)/(dx)​

Answers

Answered by mathdude500
6

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {y}^{x}  = x

  • On taking log on both sides, we get

\rm :\longmapsto\: log( {y}^{x} )  =  log(x)

\rm :\longmapsto\:x log(y)  =  log(x)

  • Now differnatiate both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} (x \: logy) = \dfrac{d}{dx} logx

We know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx} u.v = v\dfrac{d}{dx} u + u\dfrac{d}{dx} v}}

and

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \bf{ \: \dfrac{d}{dx} logx = \dfrac{1}{x} }}

On applying this, we get

\rm :\longmapsto\:x\dfrac{d}{dx} logy + logy\dfrac{d}{dx} x = \dfrac{1}{x}

\rm :\longmapsto\:x \times \dfrac{1}{y} \dfrac{dy}{dx}  + logy \times 1 = \dfrac{1}{x}

\rm :\longmapsto\:\dfrac{x}{y}\dfrac{dy}{dx}  =  \dfrac{1}{x}  - logy

\rm :\longmapsto\:\dfrac{x}{y}\dfrac{dy}{dx}  =  \dfrac{1 - xlogy}{x}

\rm :\longmapsto\:\dfrac{dy}{dx}  =  \dfrac{y(1 - xlogy)}{ {x}^{2} }

Additional Information:-

 \boxed{ \bf{ \: \dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1} }}

 \boxed{ \bf{ \: \dfrac{d}{dx} x = 1}}

 \boxed{ \bf{ \: \dfrac{d}{dx} k = 0}}

 \boxed{ \bf{ \: \dfrac{d}{dx} sinx = cosx}}

 \boxed{ \bf{ \: \dfrac{d}{dx} cosx =  - sinx}}

 \boxed{ \bf{ \: \dfrac{d}{dx} tanx =  {sec}^{2} x}}

 \boxed{ \bf{ \: \dfrac{d}{dx} secx = secxtanx}}

 \boxed{ \bf{ \: \dfrac{d}{dx}  {a}^{x} =  {a}^{x}  log(a)}}

Similar questions