Math, asked by kanishk2022, 3 months ago

if y = x^y
then prove that
dy/dx = y² / x(1-y . log x)
using logarithmic differentiation.

Answers

Answered by mathdude500
4

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{ \red{\bf{\dfrac{d}{dx} log(x)  = \dfrac{1}{x} }}}

\boxed{ \red{\bf{\dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}}}

\boxed{ \red{\bf{\dfrac{d}{dx}x = 1}}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {x}^{y}

On taking log on both sides, we get

\rm :\longmapsto\:logy = log \:  {x}^{y}

\rm :\longmapsto\:logy \:  =  \: y \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy \:  = \dfrac{d}{dx}( \: y \: logx \: )

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{d}{dx}y = y\dfrac{d}{dx}logx \:  +  \: logx\dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{dy}{dx}= y\dfrac{1}{x} \:  +  \: logx\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{1}{y} \dfrac{dy}{dx}  \: -  \: logx\dfrac{dy}{dx}= \dfrac{y}{x} \:

\rm :\longmapsto\: \bigg(\dfrac{1}{y}  \: -  \: logx \bigg)\dfrac{dy}{dx}= \dfrac{y}{x} \:

\rm :\longmapsto\: \bigg(\dfrac{1 - ylogx}{y}  \: \bigg)\dfrac{dy}{dx}= \dfrac{y}{x} \:

\bf\implies \:\dfrac{dy}{dx} = \dfrac{ {y}^{2} }{x(1 - ylogx)}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{ \red{\bf{\dfrac{d}{dx}x = 1}}}

\boxed{ \red{\bf{\dfrac{d}{dx}k = 0}}}

\boxed{ \red{\bf{\dfrac{d}{dx}sinx = cosx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosx =  - sinx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cosecx =  - cosecx \: cotx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}secx =   secx \: tanx}}}

\boxed{ \red{\bf{\dfrac{d}{dx}tanx =  {sec}^{2} x}}}

\boxed{ \red{\bf{\dfrac{d}{dx}cotx =  { - cosec}^{2} x}}}

Similar questions