if y =x² then y ,5 is equal to
Answers
Answer:
y=x
y=x 2
y=x 2 +
y=x 2 + y
y=x 2 + y1
y=x 2 + y1
y=x 2 + y1
y=x 2 + y1 ⇒y
y=x 2 + y1 ⇒y 2
y=x 2 + y1 ⇒y 2 =x
y=x 2 + y1 ⇒y 2 =x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dx
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dx
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 )
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dx
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dx
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy =
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x 2
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x 2 2xy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x 2 2xy
y=x 2 + y1 ⇒y 2 =x 2 y+1Differentiating both sides2y dxdy =2xy+x 2 dxdy ⇒(2y−x 2 ) dxdy =2xy⇒ dxdy = 2y−x 2 2xy