Math, asked by purusothmanak, 5 months ago

if y=xcosx then findf f"(x) at x=0​

Answers

Answered by mathdude500
1

Question :-

  • If y = f(x) = xcosx then find f"(x) at x=0.

Answer

Given :-

  • f(x) = x cosx

To find :-

  • f''(x) at x = 0.

Formulas used :-

\bf\dfrac{d(x^n)}{dx}=nx^{n-1}

\bf\dfrac{d(x)}{dx}=1

\bf\dfrac{d(sinx)}{dx} = cosx

\bf\dfrac{d(cosx)}{dx} =  - sinx

\bf\dfrac{d(uv)}{dx} =v \dfrac{d(u)}{dx} + u\dfrac{d(v)}{dx}

\bf\dfrac{df(x)}{dx} = f'(x)

\bf\dfrac{df'(x)}{dx} = f''(x)

Solution :-

f(x) = x cosx

Differentiate w. r. t. x, we get

\bf\dfrac{df(x)}{dx} = \bf\dfrac{d}{dx}xcosx

\bf\implies \:f'(x) = x\dfrac{d}{dx}cosx + cosx\dfrac{d}{dx}x

\bf\implies \:f'(x) =  - xsinx + cosx

Differentiate w. r. t. x, we get

\bf \:\dfrac{d}{dx}f'(x) = \dfrac{d}{dx}( - xsinx + cosx)

\bf\implies \:f''(x) =  - \dfrac{d}{dx}(xsinx) + \dfrac{d}{dx}cosx

\bf\implies \:f''(x) =  - (x\dfrac{d}{dx}sinx + sinx\dfrac{d}{dx}x) - sinx

\bf\implies \:f''(x) =  - (xcosx + sinx) - sinx

\bf\implies \:f''(x) =  - xcosx - 2sinx

Put x = 0, we get

\bf\implies \:f''(0) =  - 0 \times cos0 - 2 \times sin0

\bf\implies \:f''(0) = 0

_____________________________________________

Similar questions