Math, asked by Khush287, 10 months ago

If y = xe^xy then prove that dy/dX = y(1 + xy)/ x(1 - xy)​

Attachments:

Answers

Answered by pulakmath007
38

SOLUTION

GIVEN

 \sf{y = x \:  {e}^{xy}  \: }

TO PROVE

 \displaystyle \sf{ \frac{dy}{dx} =  \frac{y(1 + xy)}{x(1 - xy)}   \: }

PROOF

Here it is given that

 \sf{y = x \:  {e}^{xy}  \: } \:  \: ...(1)

 \displaystyle \sf{ {e}^{xy} =  \frac{y}{x}  } \:  \:  \: ....(2)

Differentiating both sides of Equation (1) with respect to x we get

 \displaystyle \sf{ \frac{dy}{dx} =  \:  {e}^{xy} + x \:  {e}^{xy} \bigg( y + x \frac{dy}{dx} \bigg) \: }

 \implies \displaystyle \sf{ \frac{dy}{dx} =  \frac{y}{x}  + x  \times  \frac{y}{x} \times   \bigg( y + x \frac{dy}{dx} \bigg) \: } ( by Eqn. 2)

 \implies \displaystyle \sf{ x\frac{dy}{dx} =  y + x y \bigg( y + x \frac{dy}{dx} \bigg) \: }

 \implies \displaystyle \sf{ x\frac{dy}{dx} =  y + x {y}^{2}  +  {x}^{2}y  \frac{dy}{dx} \: }

 \implies \displaystyle \sf{ x\frac{dy}{dx} -  {x}^{2}y  \frac{dy}{dx} =  y + x {y}^{2}  \: }

 \implies \displaystyle \sf{  \big(x -  {x}^{2}  y \big)\frac{dy}{dx}=  y + x {y}^{2}  \: }

 \implies \displaystyle \sf{ \frac{dy}{dx}= \frac{y + x {y}^{2} }{x -  {x}^{2}  y}    \: }

 \implies \displaystyle \sf{ \frac{dy}{dx}= \frac{y(1 + x {y}^{} )}{x(1 -  {x}^{}  y)}    \: }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The value of x for the minimum

The value of x for the minimumvalue of √3 cos x +sin x is

https://brainly.in/question/24003780

Answered by kareltorres7w7
0

Step-by-step explanation:

Similar questions