Math, asked by anaagupta591, 2 months ago

If y² + 1/y² = 14, then find the value of y³ + 1/y³

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: {y}^{2}  + \dfrac{1}{ {y}^{2} } = 14}

On adding 2 on both sides,we get

{\rm :\longmapsto\: {y}^{2}  + \dfrac{1}{ {y}^{2} }  + 2= 14 + 2}

can be rewritten as

{\rm :\longmapsto\: {y}^{2}  + \dfrac{1}{ {y}^{2} }  + 2 \times y \times \dfrac{1}{y} = 16}

We know that

 \purple{\boxed{ \rm{  {x}^{2}  +  {y}^{2}  + 2xy =  {(x + y)}^{2} }}}

So, using this identity, we get

\rm :\longmapsto\: {\bigg(y + \dfrac{1}{y} \bigg) }^{2}  = 16

\rm :\longmapsto\: y + \dfrac{1}{y}   =  \pm \: 4

Two cases arises.

Consider Case - 1

\rm :\longmapsto\: y + \dfrac{1}{y}   =  \: 4

On cubing both sides, we get

\rm :\longmapsto\: {\bigg(y + \dfrac{1}{y} \bigg) }^{3}  =  {4}^{3}

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } + 3 \times y \times \dfrac{1}{y}\bigg(y + \dfrac{1}{y} \bigg)  = 64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } + 3  \times 4  = 64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } + 12  = 64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} }   = 64 - 12

\bf :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} }   = 52

Consider Case - 2

\rm :\longmapsto\: y + \dfrac{1}{y}   =  \:  -  \: 4

On Cubing both sides, we get

\rm :\longmapsto\: {\bigg(y + \dfrac{1}{y} \bigg) }^{3}  =  {( - 4)}^{3}

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } + 3 \times y \times \dfrac{1}{y}\bigg(y + \dfrac{1}{y} \bigg)  = -  64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } + 3  \times ( - 4 ) =  - 64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} }  - 12 =  - 64

\rm :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } =  - 64 + 12

\bf :\longmapsto\: {y}^{3} + \dfrac{1}{ {y}^{3} } =  - 52

Additional Information :-

More Identities to know

\boxed{ \rm{  {(x + y)}^{2} =  {x}^{2}  +  {y}^{2}  + 2xy}}

\boxed{ \rm{  {(x  -  y)}^{2} =  {x}^{2}  +  {y}^{2}   -  2xy}}

\boxed{ \rm{  {(x  -  y)}^{3} =  {x}^{3} -   {y}^{3}   -  3xy(x - y)}}

\boxed{ \rm{  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x  +  y)}}

\boxed{ \rm{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}

\boxed{ \rm{  {x}^{3}  -   {y}^{3} = (x  -  y)( {x}^{2} + xy +  {y}^{2})}}

\boxed{ \rm{  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

\boxed{ \rm{  {x}^{4} -  {y}^{4} = (x  -  y)(x   + y)( {x}^{2}  +  {y}^{2})}}

Answered by Akshara6c
0

Answer:

Given, y² + 1/y² = 23

⇒ (y + 1/y)² - (2 × y × 1/y) = 23

⇒ (y + 1/y)² - 2 = 23

⇒ (y + 1/y)² = 23 + 2

⇒ (y + 1/y)² = 25

⇒ y + 1/y = - 5,

where we take the negative value only.

∴ y³ + 1/y³

= (y + 1/y)³ - (3 × y × 1/y)(y + 1/y)

= (- 5)³ - {3 × (- 5)}

= - 125 + 15

= - 110

Identity rule :

a³ + b³ = (a + b)³ - 3ab(a + b)

Sir I want shoved in image or ty

Similar questions