If you are moving on a platform having velocity c/2 and then you turn on a torch. What is the speed of the light with respect to you which comes out of torch.
Here c is velocity of light in vacuum.
Very famous question. Is there anyone so branliest to answer the question correctly at the first attempt?
I am NISHANT ABHANGI. Search my name on GOOGLE
Answers
Answer:
Explanation:ksudceie8egeh
Answer:
this question and all others about experiences at the speed of light do not have a definitive answer. You cannot go at the speed of light so the question is hypothetical. Hypothetical questions do not have definitive answers. Only massless particles such as photons can go at the speed of light. As a massive object approaches the speed of light the amount of energy needed to accelerate it further increases so that an infinite amount would be needed to reach the speed of light.
Sometimes people persist: What would the world look like in the reference frame of a photon? What does a photon experience? Does space contract to two dimensions at the speed of light? Does time stop for a photon?. . . It is really not possible to make sense of such questions and any attempt to do so is bound to lead to paradoxes. There are no inertial reference frames in which the photon is at rest so it is hopeless to try to imagine what it would be like in one. Photons do not have experiences. There is no sense in saying that time stops when you go at the speed of light. This is not a failing of the theory of relativity. There are no inconsistencies revealed by these questions. They just don't make sense.
Despite these empty answers, nobody should feel too put down for asking such questions. They are exactly the kind of question that Einstein often asked himself from the age of 16 until he discovered special relativity ten years later. Einstein reported that in 1896 he thought,
``If I pursue a beam of light with the velocity c (velocity of light in a vacuum), I should observe such a beam of light as a spatially oscillatory electromagnetic field at rest. However, there seems to be no such thing, whether on the basis of experience or according to Maxwell's equations. From the very beginning it appeared to me intuitively clear that, judged from the standpoint of such an observer, everything would have to happen according to the same laws as for an observer who, relative to the earth, was at rest. For how, otherwise, should the first observer know, i.e., be able to determine, that he is in a state of fast uniform motion? One sees that in this paradox the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, viz., of a simultaneous, unrecognizedly was anchored in the unconscious. Clearly to recognize this axiom and its arbitrary character really implies already the solution to the problem.''