Math, asked by allaizhaabo22, 19 days ago

if you are the school director how many days of work is more practical to choose?​

Attachments:

Answers

Answered by noob120055
0

Step-by-step explanation:

Let's find the sum of a pair consisting of 10 different digits.

\cdots\longrightarrow0+1+\cdots+8+9=\dfrac{1}{2}\times10\times9⋯⟶0+1+⋯+8+9=

2

1

×10×9

\cdots\longrightarrow0+1+\cdots+8+9=45.⋯⟶0+1+⋯+8+9=45.

Every ten digits repeat 11 times, so the sum is,

\cdots\longrightarrow45\times11=495.⋯⟶45×11=495.

So, the answer is,

\cdots\longrightarrow\boxed{495.}⋯⟶

495.

\large\underline{\large\underline{\text{Learn more}}}

Learn more

Where a,d,la,d,l are the first term, common difference, last term, the arithmetic terms are,

\cdots\longrightarrow a,a+d,a+2d,\cdots,l-2d,l-d,l⋯⟶a,a+d,a+2d,⋯,l−2d,l−d,l

Let S_{n}S

n

express the sum of nn consecutive numbers,

\begin{gathered}\begin{aligned}S_{n}&=a+(a+d)+(a+2d)+\cdots+(l-2d)+(l-d)+l\\S_{n}&=l+(l-d)+(l-2d)+\cdots+(a+2d)+(a+d)+a\end{aligned}\end{gathered}

S

n

S

n

=a+(a+d)+(a+2d)+⋯+(l−2d)+(l−d)+l

=l+(l−d)+(l−2d)+⋯+(a+2d)+(a+d)+a

\cdots\longrightarrow 2S_{n}=n(a+l)⋯⟶2S

n

=n(a+l)

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}n(a+l).}⋯⟶

S

n

=

2

1

n(a+l).

Where a,n,la,n,l are the first term, number of terms, last term, the arithmetic series is,

\cdots\longrightarrow S_{n}=\dfrac{1}{2}n(a+l)⋯⟶S

n

=

2

1

n(a+l)

\cdots\longrightarrow S_{n}=\dfrac{1}{2}\{a+a+(n-1)d\}⋯⟶S

n

=

2

1

{a+a+(n−1)d}

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}\{2a+(n-1)d\}.}⋯⟶

S

n

=

2

1

{2a+(n−1)d}.

Similar questions