Math, asked by Deepeshttamilan, 5 months ago

If you don't know the answer don't answer. Find the quadratic equation whose roots are half of the reciprocal of the roots of the equation
ax2 + bx+c=0
(A) 4ax? + 2bx+c=0
(B) 4cx? +2bx + a =0
(C) 2cx? + bx + a = 0
(D) 2cx? +bx+c=0​

Attachments:

Answers

Answered by Anonymous
5

Given:-

⚉Quadratic Equation = ax² + bx + c = 0

Find:-

⚉Quadratic Equation whose roots are half of the reciprocal of the roots of the equation.

Solution:-

Let, the roots of quadratic equation ax² + bx + c = 0 are α and β

we, know that

\large{ \underline{\boxed{ \sf Sum \: of \: zeroes =  \alpha  +  \beta }}}

\Longrightarrow \sf \alpha  +  \beta =  \dfrac{ - b}{a}  \\  \\

Now,

\large{ \underline{\boxed{ \sf Product \: of \: zeroes =  \alpha\beta }}}

\Longrightarrow \sf \alpha\beta =  \dfrac{c}{a}  \\  \\

Now, ACCORDING TO QUESTION

The new roots would be

:\to \sf  \alpha'  = \dfrac{1}{2 \alpha }  \: and \:  \beta' =\dfrac{1}{2 \beta } \\  \\

we, know that Quadratic Equation =

 \sf :\to {x}^{2}  - (sum \: of \: roots)x + (product \: of \: zeroes) = 0 \\  \\

 \sf :\to {x}^{2}  - (\alpha ' +  \beta')x + (\alpha'\beta') = 0 \\  \\

where,

  • α' + β' = 1/2α + 1/2β
  • α' β' = 1/2α × 1/2β

So,

 \sf :\to {x}^{2}  - \bigg ( \dfrac{1}{2 \alpha } +  \dfrac{1}{2 \beta }   \bigg)x +  \bigg(  \dfrac{1}{2 \alpha}  \times  \dfrac{1}{2 \beta }  \bigg) = 0 \\  \\

 \sf :\to {x}^{2}  - \bigg ( \dfrac{ \alpha  +   \beta }{2  \alpha \beta }   \bigg)x +  \bigg(\dfrac{1}{4 \alpha \beta }  \bigg) = 0 \\  \\

 \sf :\to {x}^{2}  - \dfrac{ \alpha  +   \beta }{2  \alpha \beta } x + \dfrac{1}{4 \alpha \beta } = 0 \\  \\

 \sf  \bigstar Taking \: L.C.M \bigstar

 \sf :\to \dfrac{4 \alpha  \beta  {x}^{2} - 2( \alpha  +  \beta )x + 1}{4 \alpha \beta } = 0 \\  \\

 \sf :\to 4 \alpha  \beta  {x}^{2} - 2( \alpha  +  \beta )x + 1= 0 \times 4 \alpha  \beta  \\  \\

 \sf :\to 4 \alpha  \beta  {x}^{2} - 2( \alpha  +  \beta )x + 1= 0 \\  \\

where,

  • \sf \alpha\beta =  \dfrac{c}{a}
  • \sf \alpha  +  \beta =  \dfrac{ - b}{a}

So,

 \sf :\to 4(\dfrac{c}{a}){x}^{2} - 2( \dfrac{ - b}{a} )x + 1= 0 \\  \\

 \sf :\to 4\dfrac{c}{a}{x}^{2} - 2\dfrac{ - b}{a} x + 1= 0 \\  \\

 \sf :\to 4\dfrac{c}{a}{x}^{2} - 2\dfrac{b}{a} x + 1= 0 \\  \\

 \sf  \bigstar Taking \: L.C.M  \: again\bigstar

 \sf :\to \dfrac{4c {x}^{2} - 2bx + a }{a}= 0 \\  \\

 \sf :\to 4c {x}^{2} - 2bx + a= 0 \times a \\  \\

 \sf :\to 4c {x}^{2} - 2bx + a= 0\\  \\

Hence, Quadratic Equation is 4cx² -2bx + a = 0

____________________________

Corrrect Option is:-

Option (B)

Similar questions