Physics, asked by kyleprincessrebuyas, 7 months ago

IF YOU GET THE CORRECT ANSWER I WILL GIVE YOU A 5 STAR AND I WILL MARK YOU AS BRAINLIEST​

Attachments:

Answers

Answered by akanksha2614
2

Answer:

UESTION

\tt{ PROVE\ THAT \frac{cot A - cos A}{cot A + cos A}=\frac{cosec A - 1}{ cosec A + 1}}PROVE THAT

cotA+cosA

cotA−cosA

=

cosecA+1

cosecA−1

Taking L.H.S

\sf{= \frac{ cot A - cos A}{ cot A + cos A}}=

cotA+cosA

cotA−cosA

\tt{\pink{Writing\ everything\ in\ terms\ of\ sin\ A\ and\ cos\ A}}Writing everything in terms of sin A and cos A

\tt{→ \frac{ \frac{cos A}{ sin A} -cos A}{\frac{cos A}{sin A} +cos A}}→

sinA

cosA

+cosA

sinA

cosA

−cosA

\tt{→ \frac{ \frac{cos A - cos A sin A}{ sin A}}{\frac{cos A +cos A sin A}{ sin A}}}→

sinA

cosA+cosAsinA

sinA

cosA−cosAsinA

\tt{→\frac{cos A (1- sin A)}{cos A (1 + sin A)}}→

cosA(1+sinA)

cosA(1−sinA)

\tt{→\frac{(1 - sin A)}{(1+ sin A)}}→

(1+sinA)

(1−sinA)

\sf{\red{Dividing\ sin\ A\ on\ numerator\ and\ denominator}}Dividing sin A on numerator and denominator

\tt{→ \frac{\frac{(1- sin A)}{ sin A}}{\frac{(1+sin A)}{ sin A}}}→

sinA

(1+sinA)

sinA

(1−sinA)

\tt{→\frac{\frac{1}{sin A}-\frac{sin A}{sin A}}{ \frac{1}{sin A}+\frac{sin A}{sin A}}}→

sinA

1

+

sinA

sinA

sinA

1

sinA

sinA

\tt{→\frac{\frac{1}{sin A}-1}{\frac{1}{sin A}+1}}→

sinA

1

+1

sinA

1

−1

we\ know\ that ↓{\boxed{\sf{\red{\frac{1}{sin A}=cosec A }}}}we know that↓

sinA

1

=cosecA

\sf{→\frac{cosec A –1}{cosec A + 1}= R.H.S.}→

cosecA+1

cosecA–1

=R.H.S.

\tt{ \frac{cot A - cos A}{cot A + cos A}=\frac{cosec A - 1}{ cosec A + 1}}

cotA+cosA

cotA−cosA

=

cosecA+1

cosecA−1

So,

L.H.S = R.H.S

Hence proved

Similar questions