Math, asked by mrkanhachaudhary, 6 months ago

If, you give Right answer then I mark you Brilliant Answer...
lim x -> 1 x⁷ - 2x⁵ + 1 / x³ - 3x² + 2​

Attachments:

Answers

Answered by PharohX
1

Here when putting limit then it form 0/0

so

Using L hospital Rule..

This rule state that differencate nominator and denominator....and put the limit so that denominator will not zero.

 \lim_{n \to 1}  \frac{ {x}^{7} - 2 {x}^{5} + 1  }{ {x}^{3} - 3 {x}^{2} + 2  }   \\  \\  =  \lim_{n \to 1} \frac{ \frac{d}{dx} ({x}^{7} - 2 {x}^{5} + 1  )}{ \frac{d}{dx} ( {x}^{3} - 3 {x}^{2} + 2)}  \\  \\  = \lim_{n \to 1} \frac{7 {x}^{6} - 10 {x}^{4}  }{3 {x}^{2} - 6x }  \\  Now \:  \:  put \:  \:  the  \:  \: limit \:  \: \\  \\  =  \frac{7( {1}^{6}) - 10( {1}^{4})  }{3(1 {}^{2} ) - 6(1)}  \\  \\  =  \frac{7 -  10}{3 - 6}  \\  \\  =  \frac{ - 3}{ - 3}  \\   = 1 \:  \:  \:  \: \: ans

Similar questions