Math, asked by Dipisha, 11 months ago

If you know the answer then only write ​

Attachments:

Answers

Answered by Anonymous
13

Given:-

  • if \rm{\dfrac{x}{y} + \dfrac{y}{x} = -1}

To Find:-

  • The value of x³ - y³

Identities used:-

  • x³ - y³ = ( x - y ) ( x² + xy + y² )

Now,

\rm{\dfrac{x}{y} + \dfrac{y}{x} = -1}

→ The Lcm of x and y is xy

Therefore,

\rm{\dfrac{x}{y} + \dfrac{y}{x} = -1}

\rm{\dfrac{x² + y²}{xy} = -1 }

\rm{ x² + y² = -xy }

Now,

→ x³ - y³ = ( x - y) ( x² + y² + xy )

→ it is being proved that + = -xy

→ x³ - y³ = ( x - y ) ( -xy + xy )

→ x³ - y³ = ( x - y ) ( 0 )

→ x³ - y³ = 0

Hence, The Value of - is 0

Hence, C is correct option.

Now, Coming to Second Question

Given:-

  • if a + b + c = 0

To Find:-

  • \rm{\dfrac{a^2}{bc} + \dfrac{b^2}{ca} + \dfrac{c^2}{ab}}

Concept used:-

  • if a + b + c = 0 then a³ + b³ + c³ = 3abc

Now,

\rm{\dfrac{a^2}{bc} + \dfrac{b^2}{ca} + \dfrac{c^2}{ab}}

→ The LCM of bc, ca and ab is abc

\rm{\dfrac{a^2}{bc} + \dfrac{b^2}{ca} + \dfrac{c^2}{ab}}

\rm{\dfrac{a^3 + b^3 + c^3}{abc}}

\rm{\dfrac{3abc}{abc}}

\rm{3}

Therefore, The value is 3.

Hence, D is correct.

Similar questions