Math, asked by C4IPL, 7 months ago

If ( z - 1 by z ) = 6, then ffind the value of ( z + 1 by z )​

Answers

Answered by MathWizzMan
34

Given :-

{\sf{\ \ z - {\dfrac{1}{z}} = 6}}

To Find :-

{\sf{\ \ z + {\dfrac{1}{z}} }}

Solution :-

Squaring both sides of {\sf{z - {\dfrac{1}{z}} . }}

\implies{\sf{ ( z - {\dfrac{1}{z}} ) ^2 = (6)^2 }}

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab }}}

{\tt{Here, \ a = z, \ b = {\dfrac{1}{z}}}}

\implies{\sf{ (z)^2 + ( {\dfrac{1}{z}} ) ^2 - 2 . z . {\dfrac{1}{z}} = 36}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} - 2 = 36}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} = 36 + 2}}

\implies{\sf{ z^2 + {\dfrac{1}{z^2}} = 38 \qquad \ \ ...(1) }}

Now,

Squaring of {\sf{z + {\dfrac{1}{z}} . }}

\implies{\sf{ ( z + {\dfrac{1}{z}} )^2 }}

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a + b)^2 = a^2 + b^2 + 2ab}}}

{\tt{Here, \ a = z, \ b = {\dfrac{1}{z}}}}

\implies{\sf{ (z)^2 + ( {\dfrac{1}{z}} )^2 + 2 . z . {\dfrac{1}{z}} }}

\implies{\sf{z^2 + {\dfrac{1}{z^2}} + 2 }}

\implies{\sf{38 + 2 \qquad \ \ ...from (1) }}

\implies{\boxed{\boxed{\sf{40}}}}

Now,

We get : {\sf{ ( z + {\dfrac{1}{z}} ) ^2 = 40}}

\implies{\sf{ z + {\dfrac{1}{z}} = {\sqrt{40}}}}

Answered by VelvetBlush
0

\tt{Squaring\: both \: sides \: of \:z-\frac{1}{z}}

\implies\tt{{(z -  \frac{1}{z} )}^{2}  =  {(6)}^{2} }

\tt\red{Identity={(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}

\tt{Here,a=z,b=\frac{1}{z}}

\implies\tt{{(z)}^{2}  +  {( \frac{1}{z}) }^{2}  - 2.z. \frac{1}{z}  = 36}

\implies\tt{ {z}^{2}   +  \frac{1}{ {z}^{2} }  - 2 = 36}

\implies\tt{ {z}^{2}  +  \frac{1}{ {z}^{2} }  = 36 + 2}

\implies\tt{ {z}^{2}  +  \frac{1}{ {z}^{2} }  = 38.......(1)}

\tt{Now,squaring \: of \: z+\frac{1}{z}}

\implies\tt{{ {(z}  +  \frac{1}{z} )^{2}}}

\tt\red{Identity={(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

\implies\tt{Here ,\: a = z \:, b =  \frac{1}{z} }

\implies\tt{ {(z)}^{2}  +   \ {( \frac{1}{z}) }^{2}  + 2.z. \frac{1}{z} }

\implies\tt{ {z}^{2}  +  \frac{1}{ {z}^{2} }   + 2}

\implies\tt{38+2......from(1)}

\implies\tt{40}

\tt{Now,}

\tt{we\: get:{(z +  \frac{1}{z} )}^{2}  = 40}

\implies\tt\red{z +  \frac{1}{z}  =  \sqrt{40} }

Similar questions