If z=(1+I/1-I)
then z4 equals.
Answers
Given : Z = (1 + i)/(1 - i)
To Find : Z⁴
Solution:
Z = (1 + i)/(1 - i)
on rationalizing
Z = (1 + i)(1 + i) /(1 - i)(1 + i)
=> Z = ( 1 + i² + 2i)/( 1 - i²)
i² = - 1
=> Z = ( 1 -1 + 2i)/( 1 - (-1))
=> Z = 2i/2
=> Z = i
Z⁴ = i⁴
=> Z⁴ = (i²)²
=> Z⁴ = ( - 1)²
=> Z⁴ = 1
Z⁴ = 1 if Z = (1 + i)/(1 - i)
Learn More:
13.If a complex number Z is purely real, thenconjugate of Z is ...
https://brainly.in/question/24022360
Q. 60 z is a complex number such that z+1/z=2cos3°,then the value ...
https://brainly.in/question/6666657
If z is any complex number satisfying |z – 3 – 2i| ≤ 2, then the ...
https://brainly.in/question/9602457
Given : Z = (1 + i)/(1 - i)
To Find : Z⁴
Solution:
Z = (1 + i)/(1 - i)
on rationalizing
Z = (1 + i)(1 + i) /(1 - i)(1 + i)
=> Z = ( 1 + i² + 2i)/( 1 - i²)
i² = - 1
=> Z = ( 1 -1 + 2i)/( 1 - (-1))
=> Z = 2i/2
=> Z = i
Z⁴ = i⁴
=> Z⁴ = (i²)²
=> Z⁴ = ( - 1)²
=> Z⁴ = 1
Z⁴ = 1 if Z = (1 + i)/(1 - i)