Math, asked by kp5687445, 5 months ago

If z = -1 + i√2, then which one of the following is not true ?
Option:
A) Re(z⁴)+Re(z³)=-2
B)Im(z⁴)+Im(z³)=5√2
C)Im(z⁴)-Re(z³)=4√2-5
D)Re(z⁴)-Im(z³)=√2-7​

Answers

Answered by Anonymous
3

Answer:

Happy New Year kp mark me as brainlist

Answered by aishwaryahk97sl
1

Answer:

D) Re(z^{4}) - Im(z^{3}) = \sqrt{2} - 7

Step-by-step explanation:

The given complex number is z = -1 + i\sqrt{2}

To find z^{2}, consider

z^{2} = (-1+i\sqrt{2} ) (-1+i\sqrt{2} )

z^{2}=1-i\sqrt{2}-i\sqrt{2}-2

z² = -1 - i2√2

To find z³, consider

z³ = z² × z

z^{3}=(-1-i2\sqrt{2} ) (-1+i\sqrt{2} )

z^{3}=1+i2\sqrt{2}-i\sqrt{2}+4

z^{3}=5+i\sqrt{2}

To find z^{4}, consider

z^{4} =  z³ × z

z^{4}=(5 +i\sqrt{2} )(-1+i\sqrt{2} )

z^{4}=-7+i4\sqrt{2}

Now check the each of the given options

A) Re(z^{4}) + Re(z^{3}) = - 7 + 5 = -2

Therefore (A) is true

B) Im(z^{4})+Im(z^{3}) = 4\sqrt{2} +\sqrt{2} = 5\sqrt{2}

Therefore (B) is true

C) Im(z^{4}) - Re(z^{3}) = 4\sqrt{2} - 5

Therefore (C) is true

D) Re(z^{4}) - Im(z^{3}) = - 7 - \sqrt{2}\sqrt{2} - 7

Therefore, (D) is not true

     

Similar questions