Math, asked by divyasharma8462, 9 months ago

If z =(1-i√3)/2(1-i) then |z| =

Answers

Answered by tanish890017
0

Answer:

1/✓2

Step-by-step explanation:

✓4/2✓2

2/2✓2

1/✓2

Answered by Cosmique
15

Given :

\purple{\bigstar}\;\sf{z=\dfrac{1-i\sqrt{3}}{2(1-i)}}

To find :

\purple{\bigstar}\;\sf{|\;z\;|=?}

Solution :

Converting z into the standard form of a Complex number

\implies\sf{z=\dfrac{1-i\sqrt{3}}{2(1-i)}}

\implies\sf{z=\dfrac{1-i\sqrt{3}}{2-2i}}

\implies\sf{z=\dfrac{1-i\sqrt{3}}{2-2i}\times\dfrac{2+2i}{2+2i}}

\implies\sf{z=\dfrac{2(1)-2\sqrt{3}\;i+2i(1)-2\sqrt{3}\;i^2}{2^2-2^2\;i^2}}

\implies\sf{z=\dfrac{2-2\sqrt{3}\;i+2i-2\sqrt{3}\;i^2}{4-4\;i^2}}

putting i² = - 1

\implies\sf{z=\dfrac{2-2\sqrt{3}\;i+2i-2\sqrt{3}\;(-1)}{4-4\;(-1)}}

\implies\sf{z=\dfrac{2-2\sqrt{3}\;i+2i+2\sqrt{3}}{4+4}}

\implies\sf{z=\dfrac{(2+2\sqrt{3})+i(2-2\sqrt{3})}{8}}

\implies\sf{z=\dfrac{(2+2\sqrt{3})}{8}+\dfrac{(2-2\sqrt{3})}{8}\;i}

From here,

\bf{real\:part\:of\:z= Re(z) =\dfrac{2+2\sqrt{3}}{8}} and

\bf{imaginary\:part\:of\:z=Im(z)=\dfrac{(2-2\sqrt{3})}{8}}

Now,

Calculating | z |

\implies\sf{|\;z\;|=\sqrt{[Re\;(z)]^2 + [Im\;(z)]^2\; }}

\implies\sf{|\;z\;|=\sqrt{\bigg(\dfrac{2+2\sqrt{3}}{8}\bigg)^2 +\bigg(\dfrac{2-2\sqrt{3}}{8}\bigg)^2}}

\implies\sf{|\;z\;|=\sqrt{\dfrac{4+12+8\sqrt{3}}{64} +\dfrac{4+12-8\sqrt{3}}{64}}}

\implies\sf{|\;z\;|=\sqrt{\dfrac{16+8\sqrt{3}+16-8\sqrt{3}}{64}}}

\implies\sf{|\;z\;|=\sqrt{\dfrac{32}{64}}}

\implies\sf{|\;z\;|=\sqrt{\dfrac{1}{2}}}

\implies\underbrace{\boxed{\boxed{\sf{|\;z\;|=\dfrac{1}{\sqrt{2}}}}}}

Answer.

Similar questions