Math, asked by ds13186701, 1 month ago

if z=1-i find the imaginary part of z^6

Answers

Answered by Tomaten
15

Answer:

\mathrm{Im}(z^6)=4\sqrt{2}

Step-by-step explanation:

Firstly, we will convert our complex number z into an exponential form.

Let:

z=x+iy

This can be converted into the form:

z=re^{i\theta}

r \:\mathrm{(modulus\:of\:z)}=\sqrt{x^2+y^2}  

\displaystyle \theta\:\mathrm{(argument\:of\:z)}=\arctan\left(\frac{y}{x}\right)

Hence, our complex number z=1-i can be converted into this form by first finding its modulus and argument.

r=\sqrt{1+(-1)^2}=\sqrt{2}

\displaystyle \theta=\arctan\left(\frac{-1}{1}\right)

\displaystyle \theta=-\frac{\pi}{4}

Substitute both the values for r and theta:

z=re^{i\theta}

\displaystyle z=\sqrt{2} e^{i\frac{\pi}{4} }

Now, we will apply the power on both sides:

\displaystyle z=\sqrt{2} e^{i\frac{\pi}{4} }

\displaystyle z^6=\left(\sqrt{2} e^{i\frac{\pi}{4} }\right)^6

z^6=8e^{i\frac{3}{2}\pi}

Using the Euler's formula, we will now convert our exponential form to the polar form:

e^{i\theta}=\cos \theta+i\sin \theta

\displaystyle e^{i\frac{3}{4}\pi}=-\frac{\sqrt{2} }{2}+i \frac{\sqrt{2} }{2}

z^6=8e^{i\frac{3}{2}\pi}

\displaystyle z^6=8\left(-\frac{\sqrt{2} }{2}+i \frac{\sqrt{2} }{2}\right)

\displaystyle z^6=-4\sqrt{2}+i\:4\sqrt{2}

Thus, we have our Imaginary part:

\mathrm{Im}(z^6)=4\sqrt{2}

Answered by anguribatham
13

Answer:

8

Step-by-step explanation:

simply calculate z6 by calculating (1-i)2 three times. the multiplication will come 8i so 8 is the answer

Similar questions