Math, asked by beenaaditya2015, 12 hours ago

if z=1-i then principal value of argz=? (a)3π/4 (b)-3π/4 (c)-π/4 (d)none of them​

Answers

Answered by sivaswethbe
2

Answer:

-pi/4

Step-by-step explanation:

I hope it helps...

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:z = 1 - i

To find the argument of z, let convert z in to polar form.

Let assume that

\rm :\longmapsto\: 1 - i = r(cos \theta  + i \: sin \theta )

\rm :\longmapsto\: 1 - i = rcos \theta  + i \: r \: sin \theta

On Comparing, real part and Imaginary part, we have

 \purple{\rm :\longmapsto\:rcos \theta  = 1 -  -  - (1)}

 \purple{\rm :\longmapsto\:rsin \theta  =  - 1 -  -  - (2)}

Squaring equation (1) and (2) and add, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2} \theta  +  {r}^{2} {sin}^{2} \theta  = 1 + 1

\rm :\longmapsto\: {r}^{2}( {cos}^{2} \theta  + {sin}^{2} \theta ) = 2

\rm :\longmapsto\: {r}^{2} = 2

\bf\implies \:r =  \sqrt{2}

On substituting the value of r in equation (1) and (2), we get

\rm :\longmapsto\:cos \theta  = \dfrac{1}{ \sqrt{2} }  \:  \: and \: \: sin \theta  =  -  \dfrac{1}{ \sqrt{2} }  \\

\rm\implies \: \theta  =  -  \: \dfrac{\pi}{4}  \\

\bf\implies \: arg(z)  =  -  \: \dfrac{\pi}{4}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

SHORT CUT TRICK TO FIND ARGUMENT

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions