Math, asked by ananyacutipie99, 9 months ago

If z+1/z=5,find the value of z-1/z​

Answers

Answered by Anonymous
5

Solution :-

Provided  

\circ \sf { z + \dfrac{1}{z} = 5}

We have to find the value of

\circ \sf { z - \dfrac{1}{z} }

Now as we know

\circ \sf { (a +b)^2 - 4ab = (a-b)^2}

Therefore by using this

\implies \sf {( z + \dfrac{1}{z})^2 - 4 = \left( z - \dfrac{1}{z}\right)^2}

\implies \sf{(5)^2 - 4 =  \left( z - \dfrac{1}{z}\right)^2}

\implies \sf {25 - 4 =  \left( z - \dfrac{1}{z}\right)^2}

\implies \sf {21 =  \left( z - \dfrac{1}{z}\right)^2}

By taking square root

\implies \sf { z - \dfrac{1}{z} = \sqrt{21}}

Answered by InfiniteSoul
1

\sf{\underline{\boxed{\mathfrak{Given}}}}

  • \sf z + \dfrac{1}{z} = 5

\sf{\underline{\boxed{\mathfrak{To\: Find}}}}

  • \sf z - \dfrac{1}{z} = ????

\sf{\underline{\boxed{\mathfrak{solution}}}}

\sf{\underline{\boxed{\normalsize{( x + \dfrac{1}{x} )^2 - (x - \dfrac{1}{x})^2= 4 }}}}

 5^2 - ( z + \dfrac{1}{z})^2 = 4

 25 - ( z + \dfrac{1}{z})^2 = 4

  ( z + \dfrac{1}{z})^2 = 25 - 4

 ( z + \dfrac{1}{z})^2 = 21

  z + \dfrac{1}{z} = \sqrt{ 21}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\normalsize{z + \dfrac{1}{z}  = \sqrt {21}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_____________________

Similar questions