Math, asked by harshadapatil1406, 3 months ago

if z-1/z-i is purely imaginary, find the locus of z​

Answers

Answered by mathdude500
1

Appropriate Question :-

  • If z is a complex number and if (z - 1)/(z + i) is purely imaginary, find the locus of z.

Basic Concept Used :-

Purely Imaginary :-

  • A complex number z = x + iy is purely imaginary iff Real part of z = 0.

Solution :-

Since, z is a complex number,

So,

  • Let z = x + iy

Consider,

\rm :\longmapsto\:\dfrac{z - 1}{z - i}

\rm \: =  \: \:\dfrac{x + iy - 1}{x + iy - i}

\rm \: =  \: \:\dfrac{x - 1 + iy }{x + i(y - 1)}

\rm \: =  \: \:\dfrac{x - 1 + iy }{x + i(y - 1)} \times \dfrac{x - i(y - 1)}{x - i(y - 1)}

\rm \: =  \: \:\dfrac{ {x}^{2} - x + iyx - i(y - 1)(x - 1) -  {i}^{2}y(y - 1)}{ {x}^{2} -  {i}^{2} {(y - 1)}^{2} }

\rm \: =  \: \:\dfrac{ {x}^{2} - x + iyx - i(xy - x - y + 1) + y(y - 1)}{ {x}^{2}  + {(y - 1)}^{2} }

\rm \: =  \: \:\dfrac{ {x}^{2} - x +  {y}^{2}  -  y  + i(yx - xy  + x  + y  -  1)}{ {x}^{2}  + {(y - 1)}^{2} }

\rm \: =  \: \:\dfrac{ {x}^{2} +  {y}^{2}  - x -  y  + i(x  + y  -  1)}{ {x}^{2}  + {(y - 1)}^{2} }

Since,

\rm :\longmapsto\:\dfrac{z - 1}{z - i}  \: is \: purely \: imaginary.

\bf\implies \:Re\bigg(\dfrac{z - 1}{z - i} \bigg) = 0

\rm :\implies\:\dfrac{ {x}^{2}+{y}^{2}  - x - y}{ {x}^{2}+{(y - 1)}^{2}} = 0

\bf\implies \: {x}^{2} +  {y}^{2} - x - y = 0

\bf\implies \:Locus \: is \: a \: circle \: whose \: centre \: is \: \bigg(\dfrac{1}{2} ,\dfrac{1}{2} \bigg)

and

\rm :\longmapsto\:radius \:  =  \sqrt{ {\bigg(\dfrac{1}{2}\bigg) }^{2}  +  {\bigg(\dfrac{1}{2}\bigg) }^{2} }

\rm \: =  \: \: \sqrt{\dfrac{1}{4}  + \dfrac{1}{4} }

\rm \: =  \: \: \sqrt{\dfrac{1 + 1}{4} }

\rm \: =  \: \: \sqrt{\dfrac{2}{4} }

\rm \: =  \: \: \sqrt{\dfrac{1}{2}}

\rm \: =  \: \:\dfrac{1}{ \sqrt{2} }

Similar questions