if z-1/z =y then z⁴+1/z⁴ =
Answers
Answer:
z 4 =(z−1) 4
⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0
⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2]=0
⇒(2z 2 −2z+1)(2z−1)=0
⇒z= 21 , 21 ± 21
i
Step-by-step explanation:
z
z 4
z 4 =(z−1)
z 4 =(z−1) 4
z 4 =(z−1) 4
z 4 =(z−1) 4 ⇒(z
z 4 =(z−1) 4 ⇒(z 2
z 4 =(z−1) 4 ⇒(z 2 )
z 4 =(z−1) 4 ⇒(z 2 ) 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1)
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ]
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1)
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1)
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z=
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 ,
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21 ±
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21 ± 2
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21 ± 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21 ± 21
z 4 =(z−1) 4 ⇒(z 2 ) 2 −[(z−1) 2 ] 2 =0⇒[z 2 +(z−1) 2 ][z 2 −(z−1) 2 ]=0⇒(2z 2 −2z+1)(2z−1)=0⇒z= 21 , 21 ± 21 i