Math, asked by Yashraj1123, 9 months ago

if z(2-i) = 3+i, find z²⁰.
a. 2¹⁰ b. -2¹⁰
c. 2²⁰ d. -2²⁰
Hope a correct and quick answer from all u geniuses...​

Answers

Answered by Anonymous
70

Given :-

  • z(2-i) = 3 + i

To Find :-

  • \rm{ {z}^{20} }

Solution :-

\rm{\implies z (2-i) = 3+i }

\rm{\implies z = \dfrac{ 3+i }{2-i}}

\rm{\implies z = \dfrac{ 3+i }{2-i} \times \dfrac{2+i}{2+i}}

\rm{\implies z = \dfrac{6+5i + {i}^{2}}{ 4- {i}^{2}}}

= - 1 .

\rm{\implies z = \dfrac{6+5i -1}{ 4.+1 }}

\rm{\implies z = \dfrac{5+5i }{ 5}}

  • \rm{\implies z = 1+ i }

In polar form :-

\rm{\implies z = \sqrt{2} [\dfrac{1}{\sqrt{2} } + \dfrac{1}{\sqrt{2}}i  ] }

\rm{\implies z = \sqrt{2} [ \cos \dfrac{\pi }{4 } +i \sin \dfrac{\pi}{4} ] }

  •  \rm{ \implies z \:  =  \sqrt{2}  {e}^{i \frac{\pi}{4} } }

\rm{ {z }^{20}\:  =  (\sqrt{2}  {e}^{i \frac{\pi}{4} } }  {)}^{20}

 \rm{ \implies  {z}^{20}  =  {2}^{10} . {e}^{i \frac{\pi}{4} \times 20 } }

\rm{ \implies  {z}^{20}  =  {2}^{10} . {e}^{i. 5 \pi} }

\rm{\implies{ z}^{20} = {2}^{10} [ \cos 5 \pi +i \sin 5 \pi] }

Cos 5π = -1 and sin 5π = 0

\rm{\implies {z}^{20} = {2}^{10} [ -1 +0.i  ] }

  • \rm{\implies {z}^{20} = - {2}^{10} }

Option B .


Anonymous: Awesome ^•^
Anonymous: Nice ❤️
Anonymous: Splendid ^^"
Anonymous: Thank uh (every one :p) :rock:
amitkumar44481: Good :-)
Anonymous: :) tq bro
mddilshad11ab: Perfect di
Anonymous: :)
Similar questions