Math, asked by sakshisharma30966, 9 months ago

if z =-3+√-2 , then prove that z⁴ + 5z³ + 8z² +7z +4 is equal to -29 ​

Answers

Answered by Swarup1998
12

Chapter- Complex Numbers

Given: \mathsf{z=-3+\sqrt{2}i}

To find: \mathsf{z^{4}+5z^{3}+8z^{2}+7z+4}

Solution:

  • Remember: \sqrt{-1}=i

  • Given, \mathsf{z=-3+\sqrt{2}i}

  • Then, \mathsf{z^{2}=(-3+\sqrt{2}i)^{2}}
  • \mathsf{=9-6\sqrt{2}i+2i^{2}}
  • \mathsf{=9-6\sqrt{2}i-2}
  • \mathsf{=7-6\sqrt{2}i}

  • Also, \mathsf{z^{3}=z\times z^{2}}
  • \mathsf{=(-3+\sqrt{2}i)(7-6\sqrt{2}i)}
  • \mathsf{=-21+18\sqrt{2}i+7\sqrt{2}i-12i^{2}}
  • \mathsf{=-21+25\sqrt{2}i+12}
  • \mathsf{=-9+25\sqrt{2}i}

  • And \mathsf{z^{4}=(z^{2})^{2}}
  • \mathsf{=(7-6\sqrt{2}i)^{2}}
  • \mathsf{=49-84\sqrt{2}i+72i^{2}}
  • \mathsf{=49-84\sqrt{2}i-72}
  • \mathsf{=-23-84\sqrt{2}i}

Therefore, \mathsf{z^{4}+5z^{3}+8z^{2}+7z+4}

\mathsf{=-23-84\sqrt{2}i-45+125\sqrt{2}i}

\quad\mathsf{+56-48\sqrt{2}i-21+7\sqrt{2}i+4}

\mathsf{=-29}

Thus proved.

Similar questions