if z=3-2i then show that z^2-6c+13=0 hence find the value of z^4 - 4z^3+6z^2-4z+17
Attachments:
Answers
Answered by
0
Answer:
-48
Step-by-step explanation:
Given,
z =3-2i
L.s= z^2-6z+13
=(3-2i)^2 - 6(3-2i) +13
= 9-12i+4i^2-18+12i+13
=9-4-18+13
=22-22
=0
=R.S. (Showed)
Given,
z^4-4z^3+6z^2-4z+17= z(z^3-4z^2+6z-4)+17
=z{z^2(z-2)-2z(z-2)+2(z-2)}+17
=z{(z-2)(z^2-2z+2)} +17
=(z^2-2z) (z^2-2z+2) +17
Now,
z^2-2z =(3-2i)^2 -2(3-2i) =9-12i-10+4i=-1-8i
and, z^2-2z+2 = -1+2-8i = 1-8i
so, (z^2-2z) (z^2-2z +2)=-(1+8i)(1-8i)=-(1+64)=-65
So, z^4-4z^3+6z^2-4z+17=-65+17=-48
Similar questions