Math, asked by rutanshpandya77, 1 day ago

if z=3-2i then show that z^2-6c+13=0 hence find the value of z^4 - 4z^3+6z^2-4z+17​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

z = 3 - 2i

 \implies \: z  - 3 =  - 2i

 \implies \:( z  - 3)^{2}  =  (- 2i) ^{2}

 \implies \:z ^{2}   +  {3}^{2}  - 6z  =  (- 2) ^{2}. i ^{2}

 \implies \:z ^{2}   - 6z   + 9=  4.( - 1)

 \implies \:z ^{2}   - 6z   + 9=   - 4

 \implies \:z ^{2}   - 6z   + 9 +  4 = 0

 \implies \:z ^{2}   - 6z   + 13 = 0

Now, we have,

 z^{4}-4z^{3}+6z^{2}-4z+17\\

=z^{4}-6z^{3}+13z^{2}+2z^{3}-7z^{2}-4z+17\\

=z^{2}(z^{2}-6z+13)+2z^{3}-7z^{2}-4z+17\\

=z^{2}(z^{2}-6z+13)+2z^{3}-12z^{2}+26z+5z^{2}-30z+17\\

=z^{2}(z^{2}-6z+13)+2z(z^{2}-6z+13z)+5z^{2}-30z+65-48\\

=z^{2}(z^{2}-6z+13)+2z(z^{2}-6z+13z)+5(z^{2}-6z+13)-48\\

Since, z^{2}-6z+13=0\\, so,

=z^{2}(0)+2z(0)+5(0)-48\\

=0+0+0-48

 = -48

Similar questions
Geography, 7 months ago