Math, asked by anaghjais14, 8 months ago

If z= 3 - 6i, then
zz
is equal to (where I=√-1)
-27
27
-45
45​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{z=3-6\,i\;where\;i=\sqrt{-1}}

\textbf{To find:}

\textsf{The value of}\;\mathsf{z\overline{z}}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{z=3-6\,i}

\mathsf{Then,\;\overline{z}=3+6\,i}

\mathsf{Now,}

\mathsf{z\overline{z}}

\mathsf{=(3-6\,i)(3+6\,i)}

\mathsf{Using,}\;\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=3^2-(6\,i)^2}

\mathsf{=3^2-6^2i^2}

\mathsf{=9-36(-1)}

\mathsf{=9+36}

\mathsf{=45}

\implies\boxed{\mathsf{z\overline{z}=45}}

\textbf{Find more:}}

i^1947+i^1950 complex number​

https://brainly.in/question/20153946

If z=√37 + √-19 Find |Z|​

https://brainly.in/question/22099402

Answered by pulakmath007
2

SOLUTION

TO CHOOSE THE CORRECT OPTION

 \sf{z = 3 - 6i \:  \: then \:  \: z \bar{z} = }

  • - 27

  • 27

  • - 45

  • 45

CONCEPT TO BE IMPLEMENTED

If z is a complex number then

 \sf{z \bar{z} =  { |z| }^{2} }

EVALUATION

Here it is given that

 \sf{z = 3 - 6i \:  \:  }

Now

 \sf{ |z|  =  \sqrt{ {3}^{2}  +  {6}^{2} }  =  \sqrt{9 + 36} =  \sqrt{45}   }

Hence

 \sf{z \bar{z} }

 \sf{ =  { |z| }^{2} }

 \sf{ =  {( \sqrt{45} )}^{2}  }

 = 45

FINAL ANSWER

Hence the correct option is 45

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 4x + (3x – y)i = 3 – 6i , then values of x and y.

(a)x=3/4, y=33/4, (b) x=33/4, y=3/4 (c) x=-33/4, y=3 (d) x=-2, y=

https://brainly.in/question/29610963

2. (1-w+w2)(1-w2+w4)(1-w4+w2)...to 2n factors

https://brainly.in/question/22457549

Similar questions