Math, asked by arya57ajay, 4 months ago

If Z and W are two non zero complex numbers such that | ZW | = 1 and Arg(Z) - Arg(W) = π/2, then ( Z bar × W ) IS equal to... ​

Attachments:

Answers

Answered by nandika32
1

Answer:

Answer...................

Attachments:
Answered by madeducators2
1

Given:

Z  and ω are two non zero complex numbers

| zω | = 1   and Arg(z) - Arg(ω) =π/2

To find:

We have to find the value of \bar{z}\omega

Solution:

Answer:  (a) -i

Let z=r_{1}e^{i\theta}  and  \omega=r_{2}e^{i\phi}

It is given that |z\omega|=1

Now  |r_{1}e^{i\theta}.r_{2}e^{i\phi}  | = 1

      |r_{1}r_{2}|.|e^{i\theta}| .|e^{i\phi} } | = 1

Here e^{i\theta} =1 because

e^{i\theta}=cos{\theta}+i sin{\theta}\\| e^{i\theta}|=\sqrt{cos^{2}{\theta} +sin^{2}{\theta} }   \\| e^{i\theta}| = \sqrt{1}=1

similarly |e^{i\phi} | =1

So r_{1}r_{2}=1 _ _ _ (1)

And  arg(z)-arg(\omega)=\frac{\pi}{2}

                  \theta-\phi=\frac{\pi}{2} _ _ _(2)

Now \bar{z}=r_{1}e^{-i\theta}

So, \bar{z}\omega=r_{1}e^{-i\theta} .r_{2}e^{i\phi}

     \bar{z}\omega=r_{1}.r_{2}.e^{-i\theta+i\phi}

     \bar{z}\omega=1.e^{-i(\theta-\phi)}      [ ∵ from (1)]

     \bar{z}\omega=e^{-i\frac{\pi}{2} }                [∵ from (2) ]

     \bar{z}\omega = cos\frac{\pi}{2} -i sin\frac{\pi}{2}

     \bar{z}\omega=0-i(1)

     \bar{z}\omega=-i

\bar{z}\omega=-i

Similar questions