Math, asked by triconeinternat4668, 11 months ago

If z=cos theta+isin theta then (1+z)/(1-z) is equal to

Answers

Answered by jitekumar4201
4

Answer:

(1 + z)(1 - z) = 2sin \theta(sin \theta - 2icos \theta)

Step-by-step explanation:

Given that-

z = cos \theta+isin \theta

(1 + z)(1 - z) =?

We have-

(1 + z)(1 - z)

= (1+cos \theta+isin \theta)[1-(cos \theta+isin \theta)]

We know that-

(a-b)(a+b) = a^{2} - b^{2}

= 1^{2} - (cos \theta+isin \theta)^{2}

= 1 -(cos^{2} \theta + i^{2}sin^{2} \theta + 2icos \theta sin \theta)

= 1 -cos^{2} \theta -i^{2} sin^{2} \theta - 2icos \theta sin \theta

But, i^{2} = -1

= 1 - cos^{2} \theta + sin^{2} \theta -2isin \theta cos \theta

But, 1 - cos^{2} \theta = sin^{2} \theta

= sin^{2} \theta + sin^{2} \theta - 2isin \theta cos \theta

= 2sin^{2} \theta - 2icos \theta sin \theta

= 2sin \theta(sin \theta - 2icos \theta)

(1 + z)(1 - z) = 2sin \theta(sin \theta - 2icos \theta)

Answered by wwwseenalingampalli
9

Answer:

mark me as a brainlist answer

Attachments:
Similar questions