If z is a complex number of unit modulus and argument θ ,then arg(1+z/1+zbar) equals:
1) θ
2) pi- θ
3) - θ
4) 90- θ
Answers
Answered by
0
Answer:
Step-by-step explanation:
4 one is the correct answer
Answered by
0
Answer:
zz can be written as cosθ+isinθ⟹z¯=cosθ−isinθcosθ+isinθ⟹z¯=cosθ−isinθ
So,
1+z1+z¯=1+cosθ+isinθ1+cosθ−isinθ
1+z1+z¯=1+cosθ+isinθ1+cosθ−isinθ
=2cos2θ2+2icosθ2sinθ22cos2θ2−2icosθ2sinθ2
=2cos2θ2+2icosθ2sinθ22cos2θ2−2icosθ2sinθ2
=cosθ2+isinθ2cosθ2−isinθ2
=cosθ2+isinθ2cosθ2−isinθ2
=(cosθ2+isinθ2)2(cosθ2−isinθ2)(cosθ2+isinθ2)
=(cosθ2+isinθ2)2(cosθ2−isinθ2)(cosθ2+isinθ2)
assuming cosθ2≠0cosθ2≠0 i.e., θ2≠(2n+1)π2θ2≠(2n+1)π2 i.e., θ≠(2n+1)πθ≠(2n+1)π where nn is any integer
as θ=(2n+1)π,1+cosθ±isinθ=0θ=(2n+1)π,1+cosθ±isinθ=0
1+z1+z¯=cosθ+isinθ using de Moivre's formula
1+z1+z¯=cosθ+isinθ using de Moivre's formula
⟹1+z1+z¯=z
⟹1+z1+z¯=z
⟹arg(1+z1+z¯)=arg(z)
Similar questions