Math, asked by steve9, 1 day ago

If z = log [(x ^ 2 - y ^ 2) / (x ^ 2 + y ^ 2)] then . x (partial x /partial x )+y (partial z/ partial y) =0​

Answers

Answered by mathdude500
5

Appropriate Question :-

\rm \: If \: z = log\bigg[\dfrac{ {x}^{2}  -  {y}^{2} }{ {x}^{2}  +  {y}^{2} } \bigg], \: prove \: that \: x\dfrac{\partial z}{\partial x} + y\dfrac{\partial z}{\partial y} = 0\\

\large\underline{\sf{Solution-}}

Given function is

\rm \: z = log\bigg[\dfrac{ {x}^{2}  -  {y}^{2} }{ {x}^{2}  +  {y}^{2} } \bigg] \\

can be rewritten as

\rm \:  {e}^{z}  = \dfrac{ {x}^{2}  -  {y}^{2} }{ {x}^{2}  +  {y}^{2} } \\

\rm \: {e}^{z} = \dfrac{ {x}^{2}\bigg(1 -   \dfrac{ {y}^{2} }{ {x}^{2} }   \bigg)  }{{x}^{2}\bigg(1 + \dfrac{ {y}^{2} }{ {x}^{2} }   \bigg)}  \\

\rm \: {e}^{z} = \dfrac{1 -   \dfrac{ {y}^{2} }{ {x}^{2} }}{1 + \dfrac{ {y}^{2} }{ {x}^{2} }}  \\

\rm\implies \:{e}^{z} \: is \: a \: homogenous \: function \: of \: degree \: 0 \\

We know, Euler's Theorem

This theorem states that, if z is a homogeneous function in x and y of degree n, then

\boxed{ \rm{ \:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} = nu \: }} \\

So, using Euler's theorem, we have

\rm \: x\dfrac{\partial }{\partial x}{e}^{z} + y\dfrac{\partial }{\partial y} {e}^{z}= 0 \times {e}^{z} \\

\rm \: x{e}^{z}\dfrac{\partial z}{\partial x} + y{e}^{z}\dfrac{\partial z}{\partial y} = 0 \\

\rm \: {e}^{z}\bigg(x\dfrac{\partial z}{\partial x} + y\dfrac{\partial z}{\partial y} \bigg)= 0 \\

\bf\implies \:x\dfrac{\partial z}{\partial x} + y\dfrac{\partial z}{\partial y} = 0 \\

\rule{190pt}{2pt}

Additional Information :-

If u is a homogeneous function in x and y of degree n, then

\boxed{ \rm{ \:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} = nu \: }} \\

\boxed{ \rm{ \:x\dfrac{\partial^{2}  u}{\partial  {x}^{2} } + y\dfrac{\partial^{2}  u}{\partial x\partial y} = (n - 1)\dfrac{\partial u}{\partial x}\: }} \\

\boxed{ \rm{ \:y\dfrac{\partial^{2}  u}{\partial  {y}^{2} } + x\dfrac{\partial^{2}  u}{\partial x\partial y} = (n - 1)\dfrac{\partial u}{\partial y}\: }} \\

\boxed{ \rm{ \: {y}^{2} \dfrac{\partial^{2}  u}{\partial  {y}^{2} } + 2xy\dfrac{\partial^{2}  u}{\partial x\partial y}  +  {x}^{2}\dfrac{\partial^{2} u}{\partial  {x}^{2} } = n(n - 1)u\: }} \\

Answered by jyotiashok256
1

Answer:

Given function is

\begin{gathered}\rm \: z = log\bigg[\dfrac{ {x}^{2} - {y}^{2} }{ {x}^{2} + {y}^{2} } \bigg] \\ \end{gathered}

z=log[

x

2

+y

2

x

2

−y

2

]

can be rewritten as

\begin{gathered}\rm \: {e}^{z} = \dfrac{ {x}^{2} - {y}^{2} }{ {x}^{2} + {y}^{2} } \\ \end{gathered}

Similar questions