Math, asked by steve9, 1 day ago

If z = log [(x ^ 2 - y ^ 2) / (x ^ 2 + y ^ 2)] then . x (partial x /partial x )+y (partial z/ partial y) =0​

Answers

Answered by 31aliahmedzahidshaik
15

Answer:

If z = log [(x ^ 2 - y ^ 2) / (x ^ 2 + y ^ 2)] then . x (partial x /partial x )+y (partial z/ partial y) =0

Attachments:
Answered by mathdude500
25

Appropriate Question :-

\rm \: If \: z = log\bigg[\dfrac{ {x}^{2} -  {y}^{2} }{ {x}^{2} +  {y}^{2} } \bigg], \: prove \: thatx\dfrac{\partial z}{\partial x}+ y\dfrac{\partial z}{\partial y}= 0\\

\large\underline{\sf{Solution-}}

Given that,

\rm \: z = log\bigg[\dfrac{ {x}^{2} -  {y}^{2} }{ {x}^{2} +  {y}^{2} } \bigg] \\

can be rewritten as

\rm \:  {e}^{z}  = \dfrac{ {x}^{2} -  {y}^{2} }{ {x}^{2} +  {y}^{2} } \\

\rm \:  {e}^{z}  =\dfrac{1 - \dfrac{ {y}^{2} }{ {x}^{2} } }{1 + \dfrac{ {y}^{2} }{ {x}^{2} } }  \\

\rm\implies \: {e}^{z} \: is \: a \: homogenous \: function \: of \: degree \: 0 \\

We Know, Euler's Theorem :- It states that if u is a homogeneous function of x and y of degree n, then

\boxed{ \rm{ \: x\dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y}= nu \:  \: }} \\

So, By Euler's Theorem, we have

\rm \: x\dfrac{\partial }{\partial x}  {e}^{z} + y\dfrac{\partial }{\partial y} {e}^{z} = 0 \times {e}^{z} \\

\rm \: x{e}^{z}\dfrac{\partial z}{\partial x}+ y{e}^{z}\dfrac{\partial z}{\partial y}  = 0 \\

\rm \:{e}^{z}\bigg( x\dfrac{\partial z}{\partial x}+ y\dfrac{\partial z}{\partial y}\bigg)= 0 \\

\rm\implies \: x\dfrac{\partial z}{\partial x}+ y\dfrac{\partial z}{\partial y}= 0 \\

\rule{190pt}{2pt}

Additional Information :-

If u is a homogeneous function of x and y of degree n, then

\boxed{ \rm{ \: x\dfrac{\partial u}{\partial x}+ y\dfrac{\partial u}{\partial y}= nu \:  \: }} \\

\boxed{ \rm{ \: x\dfrac{\partial^{2} u}{\partial  {x}^{2} }+ y\dfrac{\partial^{2}  u}{\partial  {y} \: \partial x}= (n - 1)\dfrac{\partial u}{\partial x} \:  \: }} \\

\boxed{ \rm{ \:  {x}^{2} \dfrac{\partial^{2} u}{\partial  {x}^{2} }+ 2xy\dfrac{\partial^{2}  u}{\partial  {y} \: \partial x} +  {y}^{2} \dfrac{ {\partial }^{2} u}{\partial  {y}^{2} } = n(n - 1)u \:  \: }} \\

\boxed{ \rm{ \: x\dfrac{\partial^{2} u}{\partial x \: \partial y }+ y\dfrac{\partial^{2}  u}{\partial  {y}^{2} }= (n - 1)\dfrac{\partial u}{\partial y} \:  \: }} \\

Similar questions