Math, asked by gagan666, 11 months ago

if z square+1/z square=11, find the value of z cube -1/z cube using only the positive values of z-1/z​

Answers

Answered by welcome101
38

Answer:

z {}^{2}   +  \:  \frac{1}{z {}^{2} }  = 11 \\ (z -  \frac{1}{z} ) {}^{2}  = (z {}^{2}   +  \frac{1}{z {}^{2}  } ) - 2 = 11 - 2 = 9  \\ (z -  \frac{1}{z}) =  \sqrt{9}  = 3 \\ (z -  \frac{1}{z} ) {}^{3}  = z {}^{3}  -  \frac{1}{z {}^{3} }  + 3(z -  \frac{1}{z} ) \\ 3 {}^{3}  = z {}^{3}  -  \frac{1}{z {}^{3} } + 3 \times 3 \\ z {}^{3}  -  \frac{1}{z {}^{3} } = 3 {}^{3}  - 3 \times 3 = 27 - 9 = 18 \\ thus \:  \:  \:  \: z {}^{3}  -  \frac{1}{z {}^{3} } = 18

Answered by raja06gupta
7

Answer:

please thank me and Mark as BRAINLIST thanks for your view

Attachments:
Similar questions