Math, asked by ask072003, 1 year ago

if z = x + i y such that
 |z + 1|  =  |z - 1|
and amp
 \frac{z - 1}{z + 1}  =  \frac{\pi}{4}

Answers

Answered by rakhithakur
0
hey
friends you question is
if
z = x + i y \:
such that
|z + 1| = |z - 1| \:

and
amp(\frac{z - 1}{z + 1}) = \frac{\pi}{4}
now we have to find the value of x and y

solution

hence it is given that

hence x=0
amp{ (\frac{z - 1}{z + 1} )} = \frac{\pi}{4} \\ arg( \frac{(x - 1) + iy}{(x + 1) + iy} ) = \frac{\pi}{4}
after multiplying deviding by conjugates numerator and denominator
arg( \frac{(x - 1) + iy}{(x + 1) + iy} \times \frac{(x + 1) - iy}{(x + 1) - iy} ) = \frac{\pi}{4}
=》
arg( \frac{(x - 1)(x + 1) - iy(x - 1) + iy(x + 1) + {y}^{2} }{ {(x + 1)}^{2} + {y}^{2} } = \frac{\pi}{4 } \\ arg( \: \frac{(( {x}^{2} - 1) +{y}^{2} + 2iy }{ {(x + 1)}^{2} + {y}^{2} } ) = \frac{\pi}{4}
after taking tan in Invernes and use
 \frac{imginory \: part \: }{real \: part}
=
 {tan}^{ - 1} ( \frac{ \frac{2y}{ {(x + 1)}^{2} + {y}^{2} } }{ \frac{ ({x}^{2} - 1) + {y}^{2} }{ {(x + 1)}^{2} + {y}^{2} } } ) = \frac{\pi}{4} \\
now
 {(x + 1)}^{2} + {y}^{2}
will be cancelling
=
 {tan}^{ - 1} ( \frac{2y}{ ({x}^{2} - 1) + {y}^{2} }) = \frac{\pi}{4}

now take tan on opposite side then
( \frac{2y}{ ({x}^{2} - 1) + {y}^{2} }) = tan\frac{\pi}{4}
we know that
tan \frac{\pi}{4} = 1
so
( \frac{2y}{ ({x}^{2} - 1) + {y}^{2} }) = 1
after cross multiplying
{2y} = { ({x}^{2} - 1) + {y}^{2} }
after submitting the value of x we obtain that
{2y} = { ({0}^{2} - 1) + {y}^{2} } \: \\ = > {2y} = { (0 - 1) + {y}^{2} } \\ = > 0= {y}^{2} - 2y - 1
after comparing with
 {ax}^{2} + bx + c = 0
we obtain that
a= 1
b=-2
c=-1
now use that quadratic formula
D = {{b}^{2} - 4ac} \\ so D = {( - 2)}^{2} - 4(1)( - 1) \\ = 4 + 4 \\ = 8
now
y = \frac{ - b + _{ - } \sqrt{D} }{2a} \\ = \frac{ - ( - 2) + _{ - } \sqrt{8} }{2(1)} \\ = \frac{2 + \sqrt{8} }{2} or \frac{2 - \sqrt{8} }{2} \\ = \frac{ 2(1 + \sqrt{2} \: )}{2} or \: \frac{2(1 - \sqrt{2} )}{2} \\ = (1 + \sqrt{2} )or \: (1 - \sqrt{2)}
hope it will help you thanks
at last I want to say that the question was so easy and funny
Similar questions