Math, asked by chetnagoenka4, 9 months ago

if z=x+iy and | 2z-1|=|z+1| , show that x square + y square = 2x​

Answers

Answered by senboni123456
5

Step-by-step explanation:

Given:

z = x + iy \:  \: and \:  \:  |2z - 1|  =  |z + 1|

To Prove:

 {x}^{2}  +  {y}^{2}  = 2x

Proof: Since, z = x + iy,

so, 2z - 1 = (2x - 1) + 2yi and z + 1 = (x + 1) + iy

Now,

 |2z - 1|^{2}  =  |z + 1|^{2}

 =  >  |(2x - 1) + 2yi|^{2}  =  |(x + 1) + iy|^{2}

 =  >  {(2x - 1)}^{2}  +  {(2y)}^{2}  =  {(x + 1)}^{2}   +  {(y)}^{2}

 =  > 4 {x}^{2} - 4x + 1 + 4 {y}^{2}  =  {x}^{2}   + 2x + 1 +  {y}^{2}

 =  > 3 {x}^{2}  - 6x  + 3 {y}^{2}  = 0

 =  >  {x}^{2}  - 2x +  {y}^{2}  = 0

 =  >  {x}^{2}  +  {y}^{2} = 2x

Hence proved

Similar questions