if z=x+iy, show that the locus of arg (z-1/z-i)=π/6 is a circle, find it's center and radius
Answers
Answered by
0
Step-by-step explanation:
Put z=x+iy in arg(
z+2
z−2
)=
6
π
arg(
(x+2)+iy
(x−2)+iy
)=
6
π
⇒arg((x−2)+iy)−arg((x+2)+iy)=
6
π
tan
−1
x−2
y
−tan
−1
x+2
y
=
6
π
⇒tan
−1
⎝
⎜
⎜
⎜
⎛
1+
x
2
−4
y
2
x−2
y
−
x+2
y
⎠
⎟
⎟
⎟
⎞
=
6
π
⇒
x
2
+y
2
−4
xy+2y−xy+2y
=tan
6
π
=
3
1
Similar questions