If z = x + iy, x, y real, prove that :
| x | + lZ।=V2।Z।
Answers
Answered by
6
If z = x + iy
|z| = √(x² + y²)
|z|² = x² + y² ………(1)
we know that,
( |x| + |y| )² = |x|² + |y|² + 2|x||y| ………...(2)
and ( |x| - |y| )² = |x|² + |y|² - 2|x||y|
we know that, whole square is always greater than zero.
( |x| - |y| )² ≥ 0
|x|² + |y|² - 2|x||y| ≥ 0
|x|² + |y|² ≥ 2|x||y|
from equation (2)
( |x| + |y| )² ≤ |x|² + |y|² + |x|² + |y|²
( |x| + |y| )² ≤ 2 (|x|² + |y|²)
( |x| + |y| )² ≤ 2 |z|²
both side square root
|x| + |y| ≤ √2 |z|
Hence proved
Step-by-step explanation:
Mark it as brainliest answer
Similar questions