Math, asked by rajurajak161, 5 months ago

If z= x+ iy, |z-1|²+ | z+1|²=4 then find the location of z​

Answers

Answered by shadowsabers03
17

So we are given,

  • z=x+iy

where x,\ y\in\mathbb{R} such that,

\longrightarrow|z-1|^2+|z+1|^2=4

\longrightarrow2\left(z^2+1\right)=4

\longrightarrow z^2+1=2

\longrightarrow z^2=1

\longrightarrow (x+iy)^2=1

\longrightarrow x^2-y^2+2xyi=1

\longrightarrow (x^2-y^2-1)+(2xy)i=0+0i

Equating corresponding parts, we get,

  • x^2-y^2=1\quad\quad\dots(1)
  • 2xy=0\quad\quad\dots(2)

(2) implies either x or y equals 0.

Let x=0. Then (1) becomes,

\longrightarrow -y^2=1

No y\in\mathbb{R} satisfy this equation.

Let y=0. Then (1) becomes,

\longrightarrow x^2=1

\longrightarrow x=\pm1

Hence z has two locations, (1, 0) and (-1, 0).

Similar questions