Math, asked by Ruled, 9 months ago

If Z1=1+i and Z2, =1-i then Z1/Z2

Answers

Answered by nandan2004
7

Answer:

z1 = 1 + i and z2 = 1 - i

z1/z2 = (1+i) / (1-i)

= {(1+i) / (1-i)} * {(1+i) / (1-i)}

= (1+i)² / (1-i²)

= (1 +2i + i²) / (1 - (-1))

= (1 + 2i - 1)/(1+1)

= 2i/2

= i

Answered by smithasijotsl
2

Answer:

The value of \frac{Z_1}{Z_2} = i

Step-by-step explanation:

Given,

Z_1 = 1+i

Z_2 = 1 -i

To find,

\frac{Z_1}{Z_2}

Solution:

\frac{Z_1}{Z_2} = \frac{1+i}{1-i}

To simplify this complex number, we should multiply the numerator and denominator with the complex conjugate of the denominator.

The complex conjugate of the denominator = 1 +i

\frac{Z_1}{Z_2} = \frac{1+i}{1-i} .

= \frac{1+i}{1-i} X \frac{1+i}{1+i}

= \frac{(1+i)^2}{(1+i)(1-i)}

= \frac{1^2+(i)^2 + 2i}{(1)^2-(i)^2}(since i = \sqrt{-1}, i² = -1)

=\frac{1+(-1) + 2i}{1-(-1)}

= \frac{2i}{2}

= i

\frac{Z_1}{Z_2} = i

∴The value of \frac{Z_1}{Z_2} = i

#SPJ3

Similar questions