Math, asked by souravNegi888, 11 months ago

If |z1|=1,|z2|=2,|z3|=3and |9z1z2+4z1z3+z2z3|=12 then value of |z1+z2+z3|=?

Answers

Answered by MaheswariS
10

\textbf{Given:}

|z_1|=1,\;|z_2|=2,\;|z_3|=3

\text{consider},

|z_1|=1

\implies\;|z_1|^2=1^2

\implies\;z_1\overline{z_1}=1

\implies\;z_1=\frac{1}{\overline{z_1}}

\text{Similarly}\;z_2=\frac{4}{\overline{z_2}}\text{ and } z_3=\frac{9}{\overline{z_3}}

\text{Now,}

|z_1+z_2+z_3|

=|\frac{1}{\overline{z_1}}+\frac{4}{\overline{z_2}}+\frac{9}{\overline{z_3}}|

=|\frac{\overline{z_2}\overline{z_3}+4\overline{z_1}\overline{z_3}+9\overline{z_1}\overline{z_2}}{\overline{z_1}\overline{z_2}\overline{z_3}}|

=|\frac{\overline{z_2z_3+4\,z_1z_3+9\,z_1z_2}}{\overline{z_1z_2z_3}}|

=|\overline{(\frac{z_2z_3+4z_1z_3+9z_1z_2}{z_1\,z_2\,z_3})}|

\text{We know that, }\bf|z|=|\bar{z}|

=|\frac{z_2z_3+4z_1z_3+9z_1z_2}{z_1z_2z_3}|

=\frac{|z_2z_3+4z_1z_3+9z_1z_2|}{|z_1|\,|z_2|\,|z_3|}

=\frac{12}{1{\times}2{\times}3}

=6

\therefore\bf|z_1+z_2+z_3|=6

Answered by prudhvirajchukkala
1

Answer:

Step-by-step explanation:

That answer is wrong

Answer is 2

Similar questions