Math, asked by avishekkumarkeshri, 1 year ago

If Z1=2+3i and Z2=4-5i then find a)Z1+Z2b)Z1÷Z2c)Z1-Z2d)Z1×Z2e)Z1bar ×Z2bar​

Answers

Answered by gurjantsingh12
3

Step-by-step explanation:

a).

  • Z1+Z2
  • 2+3i+4-5i
  • 2+4+3i-5i
  • 6-2i

b).

  • Z1÷Z2
  • 2+3i/4-5i
  • 2+3i=4-5i
  • 2-4=-5i-3i
  • -2=-8i
  • I=-2/-8
  • I=1/4

c).

  • Z1-Z2
  • (2+3i)-(4-5i
  • 2+3i-4+5i
  • -2+8i

d).

  • Z1×Z2
  • (2+3i)(4-5i)
  • 2(4-5i)+3i(4-5i)
  • 8-10i+12i-15i²
  • 8+2i+15i²

plz mark it brainlist

Answered by payalchatterje
0

Answer:

Required value of z_1 + z_2 is 7-2i.

and required value of z_1 \div z_2 is  \frac{7 - 22i}{9}

and required value of z_1 - z_2 is (-2+8i)

and required value of z_1 \times z_2 is (22+2i)

and required value of Z1bar ×Z2bar is 22-7i

Step-by-step explanation:

Given,

z_1 = 2 + 3i \\ z_2 = 4 - 5i

Now,

z_1 + z_2 \\  = 2 + 3i + 4 - 5i \\  = (3 + 4) + i(3 - 5) \\  = 7  - 2i

and

z_1 \div z_2 \\  =  \frac{2 + 3i}{4 - 5i}  \\  =  \frac{(2 + 3i)(4 + 5i)}{(4 - 5i)(4 + 5i)}  \\  =  \frac{8 + 10i + 12i - 15}{ {4}^{2} -  {(5i)}^{2}  }  \\  =  \frac{ - 7 + 22i}{16 - 25}  \\  =  \frac{7 - 22i}{9}

and

z_1 - z_2 = 2 + 3i - (4 - 5i) \\  =  2 + 3i - 4 + 5i \\  =  - 2 + 8i

and

z_1 \times z_2 = (2 + 3i) \times (4 - 5i) \\  = 8 - 10i + 12i - 15 {i}^{2}  \\  = 8 + 2i + 15 \\  = 22 + 2i

and Z1 bar ×Z2 bar

 = (2 - 3i) \times (4 + 5i) \\  = 8 + 5i - 12i - 15 {i}^{2}  \\  = 8 - 7i + 15 \\  = 22 - 7i

Know more about Complex number:

https://brainly.in/question/12233847

https://brainly.in/question/23823208

#SPJ2

Similar questions