Math, asked by bgatghule, 1 month ago

if z1= -2+i and z2=1-3i then find Re (1/z1z2)​

Answers

Answered by Anonymous
3

Given :-

 \leadsto z_1 =  - 2 + i

 \leadsto z_2 =  1 - 3i

To find :-

 \leadsto Re\left(\dfrac{1}{z_1.z_2}\right)

Solution :-

 \implies Re\left(\dfrac{1}{z_1.z_2}\right)

 \implies Re\left(\dfrac{1}{( - 2 + i)(1 - 3i)}\right)

 \implies Re\left(\dfrac{1}{ - 2(1 - 3i) + i(1 - 3i)}\right)

 \implies Re\left(\dfrac{1}{ - 2  + 6i + i - 3i^{2} }\right)

 \implies Re\left(\dfrac{1}{ - 2  + 7i- 3i^{2} }\right)

 \implies Re\left(\dfrac{1}{ - 2  + 7i- 3( - 1) }\right)

 \implies Re\left(\dfrac{1}{ - 2  + 7i + 3}\right)

 \implies Re\left(\dfrac{1}{ 1 + 7i }\right)

 \implies Re\left(\dfrac{1}{ 1 + 7i } \times  \dfrac{1 - 7i}{1 - 7i} \right)

 \implies Re\left(  \dfrac{1 - 7i}{(1)^{2}  - (7i)^{2} } \right)

 \implies Re\left(  \dfrac{1 - 7i}{1 - 49 {i}^{2}  } \right)

 \implies Re\left(  \dfrac{1 - 7i}{1 - 49 ( - 1)} \right)

 \implies Re\left(  \dfrac{1 - 7i}{1  + 49} \right)

 \implies Re\left(  \dfrac{1 - 7i}{50} \right)

 \implies Re\left(  \dfrac{1 }{50} +  \dfrac{ - 7i}{50}  \right)

\boxed{ \implies \dfrac{1 }{50}}

Hence the required answer is 1/50.

Note : i = √-1 , i² = 1

Similar questions