Math, asked by manasvi2604, 1 month ago

If z1=3-i and z2 = -3+i , find Re(z1z2/z1).

complete explaination I'll mark brainliest​

Attachments:

Answers

Answered by Diliptalapda
1

Step-by-step explanation:

−9+3+3+1

2 Collect like terms.

\frac{(-9+1)+(3\imath +3\imath )}{3-\imath }

3−

(−9+1)+(3+3)

3 Simplify (-9+1)+(3\imath +3\imath )(−9+1)+(3+3) to -8+6\imath−8+6.

\frac{-8+6\imath }{3-\imath }

3−

−8+6

4 Rationalize the denominator: \frac{-8+6\imath }{3-\imath } \cdot \frac{3+\imath }{3+\imath }=\frac{-24-8\imath +18\imath -6}{{3}^{2}-{\imath }^{2}}

3−

−8+6

3+

3+

=

3

2

−

2

−24−8+18−6

.

\frac{-24-8\imath +18\imath -6}{{3}^{2}-{\imath }^{2}}

3

2

−

2

−24−8+18−6

5 Collect like terms.

\frac{(-24-6)+(-8\imath +18\imath )}{{3}^{2}-{\imath }^{2}}

3

2

−

2

(−24−6)+(−8+18)

6 Simplify (-24-6)+(-8\imath +18\imath )(−24−6)+(−8+18) to -30+10\imath−30+10.

\frac{-30+10\imath }{{3}^{2}-{\imath }^{2}}

3

2

−

2

−30+10

7 Simplify {3}^{2}3

2

to 99.

\frac{-30+10\imath }{9-{\imath }^{2}}

9−

2

−30+10

8 Use Square Rule: {i}^{2}=-1i

2

=−1.

\frac{-30+10\imath }{9-(-1)}

9−(−1)

−30+10

9 Remove parentheses.

\frac{-30+10\imath }{9+1}

9+1

−30+10

10 Simplify 9+19+1 to 1010.

\frac{-30+10\imath }{10}

10

−30+10

11 Factor out the common term 1010.

\frac{-10(3-\imath )}{10}

10

−10(3−)

12 Move the negative sign to the left.

-\frac{10(3-\imath )}{10}

10

10(3−)

13 Cancel 1010.

-(3-\imath )

−(3−)

14 Remove parentheses.

-3+\imath

−3+

Similar questions