Math, asked by mohitparjapati8116, 1 year ago

if z1=a+ib and z2=c+id are complex numbers such that |z1|=|z2|=1 and re(z1z2?)=0 then the pair of complex numbers w1=a+ic and w2=b+id satisfies

Answers

Answered by pinquancaro
19

The question is incomplete. The complete question is as:

If  z_{1} =a+ib and  z_{2} =c+id are complex numbers such that | z_{1} |=| z_{2} |=1 and  Re(z_{1}\overline{z_{2}})=0 then the pair of complex numbers  w_{1} =a+ic and  w_{2} =b+id satisfies

1.  \left | w_{1} \right |= 1

2.  \left | w_{2} \right |= 1

3.  Re(w_{1}\overline{w_{2}})=0

4. None of these

Solution:

Since | z_{1} |=| z_{2} |=1

So,   z_{1} = \cos \Theta_{1}+i \sin \Theta_{1}

and  z_{2} = \cos \Theta_{2}+i \sin \Theta_{2}

So,  a= \cos \Theta_{1} , b= \sin \Theta_{1}, c = \cos \Theta_{2}, d= \sin \Theta_{2}

Consider  Re(z_{1}\overline{z_{2}})

=  (\cos \Theta _{1}+i\sin \Theta _{1})(\cos \Theta _{2}-i\sin \Theta _{2})

=  =(\cos \Theta _{1}\cos \Theta _{2}-i\cos \Theta _{1}\sin \Theta _{2}+i\sin \Theta_{1}\cos \Theta _{2}-i^{2}\sin \Theta _{1}\sin \Theta _{2})

=  =(\cos \Theta _{1}\cos \Theta _{2}+\sin \Theta _{1}\sin \Theta _{2})+i(\sin \Theta _{1}\cos \Theta _{2}-\cos \Theta_{1}\sin \Theta _{2})

=  =\cos (\Theta _{1}-\Theta _{2})+i\sin (\Theta _{1}-\Theta _{2})

Since  Re(z_{1}\overline{z_{2}}) =0

So,  \cos (\Theta _{1}-\Theta _{2})=0

 (\Theta _{1}-\Theta _{2})=\frac{\Pi }{2}

So,  \Theta _{1}=\Theta _{2}+\frac{\Pi }{2}

Now, consider  w_{1}=a+ic

 w_{1}=\cos \Theta _{1}+i\cos \Theta _{2}

 w_{1}=\cos (\frac{\Pi }{2}+\Theta _{2})+i\cos \Theta _{2}

 w_{1}=\sin \Theta _{2}+i\cos \Theta _{2}

 \left |w_{1}  \right |=\sqrt{(\sin \Theta _{2})^{2}+(\cos \Theta _{2})^{2}}=1

So,  \left |w_{1}  \right |=1

 w_{2}=\cos \Theta _{2}+i\sin \Theta _{2}

 \left |w_{2}  \right |=\sqrt{(\sin \Theta _{2})^{2}+(\cos \Theta _{2})^{2}}=1

So,  \left |w_{2}  \right |=1

Consider

 Re(w_{1}\overline{w_{2}})

= Re[(\cos \Theta _{1}+i\cos \Theta _{2})(\sin \Theta _{1}-i\sin \Theta _{2})]

 =[(\cos \Theta _{1}\sin \Theta _{1}+\cos \Theta _{2}\sin \Theta _{2})]

= [(\cos (\frac{\Pi }{2}+\Theta _{2})\sin (\frac{\Pi }{2}+\Theta _{2})+\cos \Theta _{2}\sin \Theta _{2})]

= -\sin \Theta _{2}\cos\Theta _{2}+\cos \Theta _{2}\sin \Theta _{2}

= 0.

So,  Re(w_{1}\overline{w_{2}})=0

So, the options 1, 2 and 3 are correct.

Similar questions