Math, asked by modi7260, 11 months ago

If z1 & z2 are two non-zero complex numbers, then prove that arg z1z2 = arg z1 - arg z2.

Follow me I will follow you back.

Answers

Answered by IamIronMan0
1

Answer:

Let

 z_{1} = a_{1}  {e}^{i \theta_1}

 z_{2} = a_{2}  {e}^{i \theta_2}

 z_{1} z_{2} = a_{1}  {e}^{i \theta_1}  a_{2}  {e}^{i \theta_2}  =   a_{1}  a_{2} {e}^{i (\theta_1 +  \theta_2)}

Hence proved

Answered by vkpathak2671
0

Answer:

Let z

1

=cosθ

1

+isinθ

1

z

2

=cosθ

2

+isinθ

2

∴z

1

+z

2

=(cosθ

1

+cosθ

2

)+i(sinθ

1

+sinθ

2

)

Now,

∣z

1

+z+2∣=∣z

1

∣+∣z

2

(cosθ

1

)

2

+(sinθ

1

+sinθ

2

)

2

=1+1

On squaring both side

⇒2(1+cos(θ

1

−θ

2

))=4

⇒cos(θ

1

−θ

2

)=1

⇒θ

1

−θ

2

=0(∵cos0=1)

⇒argz

1

−argz

2

=0

Similar questions