Math, asked by jasrajsingh248, 9 months ago

if z1 and z2 are complex numbers prove that conjugate of (Z1 -Z2)= conjugate of Z1-conjugate of Z2​

Answers

Answered by pulakmath007
13

SOLUTION

GIVEN

 \sf{z_1 \:  and  \: z_2 \:  are \:  complex \:  numbers }

TO PROVE

 \sf{ \overline{z_1  -  z_2} =\overline{z_1}  - \overline{z_2} }

EVALUATION

Let

 \sf{ z_1  = a + ib \:  \:  \: and \:  \:   z_2 = x + iy }

Then

 \sf{  \overline{z_1}  = a  -  ib \:  \:  \: and \: \:  \:   \overline{  z_2 }= x  -  iy }

Now

LHS

 \sf{ =  \overline{z_1  -  z_2} }

 \sf{ =  \overline{(a + ib) -  (x + iy)}  }

 \sf{ =  \overline{(a  - x)+ i(b - y) }  }

 \sf{ = (a  - x) -  i(b - y)  }

 \sf{ = (a  -ib) - (x - iy)  }

 \sf{ =\overline{z_1}  - \overline{z_2} }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Prove z1/z2 whole bar is equal to z1 bar/z2 bar.

Bar here means conjugate

https://brainly.in/question/16314493

2. If 4x + (3x – y)i = 3 – 6i , then values of x and y.

(a)x=3/4, y=33/4, (b) x=33/4, y=3/4 (c) x=-33/4, y=3 (d) x=-2, y=

https://brainly.in/question/29610963

Similar questions