If z1 and z2 are complex numbers then prove that arg(z1/z2) = arg(z1) - arg(z2)
Answers
Answered by
3
Step-by-step explanation:
Given :-
- |z1 + z2| = |z1| + |z2|
To Find :-
- prove that arg(z1/z2) = arg(z1) - arg(z2)
Solution :-
On squaring both sides
=> |z1|2 + |z2|2 + 2|z1| |z2|
Because(arg z1 – arg z2) = |z1|2 + |z2|2 + 2|z1| |z2|
=> 2|z1| |z2|
Because (arg z1 – arg z2) = 2|z1| |z2|
=> (arg z1 – arg z2) = 1
=> arg (z1) – arg (z2) = 0.
Hence proved arg(z1) = arg(z2)
more information :-
https://brainly.in/question/13168095
Similar questions