Math, asked by sarangchungade, 8 months ago

if. Z1 and Z2 are two complex number such that | Z1 | = | Z2 | + | Z1 - Z2 | then. a) Im[ Z1/Z2 ] = 0. b)Re[ Z1/Z2 ] = 0. c) Im[ Z1/Z2 ] = Re[ Z1/Z2 ] d) none of these​

Answers

Answered by dineshjain90664
1

if. Z1 and Z2 are two complex number such that | Z1 | = | Z2 | + | Z1 - Z2 | then. a) Im[ Z1/Z2 ] = 0. b)Re[ Z1/Z2 ] = 0. c) Im[ Z1/Z2 ] = Re[ Z1/Z2 ] d) none of these

I ALSO WANT THE ANSWER OF SAME QUESTION

Answered by saounksh
1

ANSWER

  • \boxed{a) Im[\frac{Z₁}{Z₂}] = 0}

FORMULA

For any complex number z,

1. \: z \bar{z} \:  =   { |z| }^{2}

2. \:z + \bar{z} = 2Re(z)

3. \:Re(z) = |z| ⇒ Im(z) = 0

4. \:|z| = |\bar{z}|

(Try proving them by taking z=x+iy)

EXPLAINATION

Here

|Z₁| = |Z₂| + |Z₁- Z₂|

⇒|Z₁| - |Z₂| = |Z₁- Z₂|

⇒(|Z₁| - |Z₂|)² = |Z₁- Z₂|²

⇒|Z₁|² - 2|Z₁||Z₂| + |Z₂|²

 \:\:\:\:\:\:= |Z₁- Z₂|²

Using formula (1)

⇒|Z₁|² - 2|Z₁||Z₂| + |Z₂|²

 \:\:\:\:\:\:= (Z₁- Z₂)(\bar{Z₁} - \bar{Z₂})

⇒|Z₁|² - 2|Z₁||Z₂| + |Z₂|²

\:\:\:\:\:\:= Z₁\bar{Z₁} - Z₁\bar{Z₂}- Z₂\bar{Z₁} + Z₂\bar{Z₂}

Using formula (1)

⇒|Z₁|² - 2|Z₁||Z₂| + |Z₂|²

 \:\:\:\:\:\: = |Z₁|² - (Z₁\bar{Z₂} + \bar{Z₁}Z₂) +  |Z₂|²

⇒2|Z₁||Z₂| = Z₁\bar{Z₂} + \bar{Z₁}Z₂

Using formula (2)

⇒2|Z₁||Z₂| = 2Re(Z₁\bar{Z₂})

Using formula (4)

⇒|Z₁||\bar{Z₂}| = Re(Z₁\bar{Z₂})

⇒|Z₁\bar{Z₂}| = Re(Z₁\bar{Z₂})

Using formula (3)

⇒Im(Z₁\bar{Z₂}) = 0

Using formula (1)

⇒Im(Z₁\frac{|Z₂|²}{Z₂}) = 0

⇒|Z₂|²Im(\frac{Z₁}{Z₂}) = 0

⇒Im(\frac{Z₁}{Z₂}) = 0

Similar questions