Math, asked by monalipatel769, 7 months ago

if z1,z2 are two comlex number such that |z1|=|z2|=2 and |z1+z2|=√3 then |z1-|z2|=?

Answers

Answered by senboni123456
0

Step-by-step explanation:

since we have,

 |z_{1} |  = |z_{2} |

it implies that, z1 and z2 are conjugate of each other.

Let,

|z_{1} | = x + iy \:  \: and \:  \: |z_{2} | = x - iy

Given that,

|z_{1} | = |z_{2} | = 2 \\  =  >  \sqrt{ {x}^{2}  +  {y}^{2} }  = 2 \\  =  >  {x}^{2}  +  {y}^{2}  = 4 \:  \:  \:  \:

 |z_{1}  +  z_{2}  | =  \sqrt{3} \:  \:  \:  \:  \:  \:  \:  \:   \\  =  >  |x + iy + x - iy|  =  \sqrt{3}  \\  =  >  |2x|  =  \sqrt{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  =  > 4 {x}^{2}   = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\   =  >  {x}^{2}  =  \frac{3}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \:

Now,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  {y}^{2}  = 4  -  {x}^{2}  \\  =  >  {y}^{2}  = 4 -  \frac{3}{4}  \\  =  >  {y}^{2}  =  \frac{1}{4}  \:  \:  \:  \:  \:  \:  \:  \:

so,

|z_{1}   -   z_{2}  | =  |x + iy - x + iy| \\  =  |2iy|  =  \sqrt{ {(2y)}^{2}}  =  \sqrt{4 {y}^{2} } = \sqrt{ 4 \times  \frac{1}{4}}  \\  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions