Math, asked by Anonymous, 7 months ago

if z1+z2/z1-z2=i then show that z1/z2 is purely imaginary​

Answers

Answered by AlluringNightingale
7

Given :

(z1 + z2)/(z1 - z2) = i , where z1 and z2 are complex numbers .

To prove :

z1/z2 is purely imaginary , ie. z1/z2 is of the form ai where i = √(-1) and a € R .

Proof :

We have ;

(z1 + z2)/(z1 - z2) = i

Now ,

Applying componendo and dividendo , We get ;

=> [(z1 + z2) + (z1 - z2)] / [(z1 + z2) - (z1 - z2)]

= (i + 1)/(i - 1)

=> (z1 + z2 + z1 - z2 ) / (z1 + z2 - z1 + z2)

= (i + 1)/(i - 1)

=> 2z1/2z2 = (i + 1)/(i - 1)

=> z1/z2 = (i + 1)/(i - 1)

Now ,

Rationalising the denominator of the term in RHS , we get ;

=> z1/z2 = (i + 1)(i + 1) / (i - 1)(i + 1)

=> z1/z2 = (i + 1)²/(i² - 1²)

=> z1/z2 = (i² + 1² + 2•i•1)/(-1 - 1)

=> z1/z2 = (-1 + 1 + 2i)/(-2)

=> z1/z2 = 2i/(-2)

=> z1/z2 = -i

Clearly , -i is purely imaginary and hence , z1/z2 is purely imaginary .

Hence proved .

Similar questions